> 数学 >
已知函数f(x)=2sin²(π/4+x)-根号3cos2x,x∈[π/4,π/2]
(1) 求f(x)的最大值最小值
(1)
f(x)=2sin²(π/4+x)-根号3cos2x
=1-cos(π/2+2x)-√3cos2x
=sin2x-√3cos2x+1
=2sin(2x-π/3)+1
∵ x∈[π/4,π/2]
∴ 2x-π/3∈[π/6,2π/3]
∴ sin(2x-π/3)∈[1/2,1]
∴ 2x-π/3=π/6时,f(x)有最小值2
2x-π/3=π/2时,f(x)有最大值3
为什么 sin(2x-π/3)∈[1/2,1]
人气:164 ℃ 时间:2019-08-20 04:16:23
解答
因为sinπ/6到sinπ/2是增函数,[
1/2,1]
,sinπ/2到sin2π/3是减函数值域{1,二分之根号三} 所以sin(2x-π/3)∈[1/2,1]
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版