在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC;
(1)求角B的大小;
(2)设
=(sinA,cos2A),
=(4k,1)(k>1),且
•
的最大值是5,求k的值.
(I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)∵A+B+C=π,∴2sinAcosB=sinA∵0<A<π,∴sinA≠0.∴cosB=12∵0<B<π,∴B=π3.(II)m•n=4ksinA+cos2A...