计算:定积分∫(在上 √3,在下0 )xarctan
人气:218 ℃ 时间:2020-06-15 21:41:12
解答
∫[0,√3]xarctan xdx=1/2∫[0,√3]arctan xdx^2=1/2x^2arctanx[0,√3]-1/2∫[0,√3]x^2darctan x=π/2-1/2∫[0,√3]x^2/(1+x^2)dx=π/2-1/2∫[0,√3][1-1/(1+x^2)]dx=π/2-1/2(x-arctanx)[0,√3]=π/2-√3/2+π/6=2...
推荐
猜你喜欢