微分方程y''+y'=e的x次+cosx的通解,
人气:229 ℃ 时间:2020-05-25 04:32:57
解答
易得齐次方程通解为
C1e^(-x)+C2
再求特解
设y=Ae^x+Bcosx+Csinx得
y'=Ae^x-Bsinx+Ccosx
y''=Ae^x-Bcosx-Csinx
代入原方程得
y''+y'=2Ae^x+(C-B)cosx-(B+C)sinx=e^x+cosx
对比系数得
A=1/2,B=-1/2,C=1/2
综上得方程通解
y=C1e^(-x)+C2+e^x/2-cosx/2+sinx/2
推荐
猜你喜欢
- jet lap的中文意义
- 集合A={x|x2+x+1=0,x∈R},B={x|x(x2+6x+10)=0,x∈N},C={x|4x+5
- (2/29+3/29)×29×23等于?
- There is a radio on the sofa.=A radio_____ _____the sofa.
- 已知集合A={x|y=lg(x-2)},集合B={y|y=2^x},则A交B=?
- 0.8Mpa,80℃时95%乙醇是气态还是液态
- 英语翻译
- 写一篇读完这篇文章的心得,用英语,100词左右(速度点,没时间了