菱形ABCD中,对角线AC、BD相交于点O.OA:OB=1:2,且菱形的周长为20,则菱形的面积是多少?
人气:330 ℃ 时间:2020-04-04 03:54:08
解答
∵在菱形ABCD中,AB=BC=CD=DA=周长20/4=5,AC=2OA,BD=2OB,AC⊥BD∵OA:OB=1:2,所以可设OA=x,OB=2x∵AC⊥BD∴∠AOB=90°∴AB²=OA²+OB²即5²=x²+﹙2x﹚² 解x=√5∴AC=2OA=2x=2√5,BD=2OB=...
推荐
- 已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
- 如图,在菱形ABCD中,对角线AC与BD相交于点O,OA:OB=4:3,且AB=20cm,求菱形的高
- 在菱形ABCD中对角线AC与BD交于点O,OA=4,OB=3则菱形的周长为多少
- 菱形ABCD的对角线AC与BD交与O点,如果AC=6cm,BD=8cm,那么OA=()cm,OB=()cm,AB=()cm,菱形的周长=()cm,菱
- 菱形ABCD的周长为2P,对角线AC;BD交于O,AC+BD=q.求菱形ABCD的面积.
- 计算①√(a-b)²=?②(3a-3)的四次方开四次方
- 英语翻译
- 为什么并联电路中,总电阻小于任一支路的电阻
猜你喜欢