高中导数中f(x)=ax^3+bx^2+cx 若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求
人气:494 ℃ 时间:2019-08-17 23:17:05
解答
f(x)=ax^3+bx^2+cx若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)若过点A(2,m)可做曲线y=f(x)的三条切线,求实数m的取值范围f‘(x) = 3ax^2+2bx+c在x=正负1处...
推荐
- 设f(x)=ax^3+bx^2+cx+d,(a
- 高中数学导数已知函数f(x)=ax^4+bx^3+cx^2+dx+e为偶函数
- 已知函数f(x)=x3+ax2+bx+5,若x=2/3时,y=f(x)有极值,且曲线y=f(x)在点f(1)处的切线斜率为3. (1)求函数f(x)的解析式; (2)求y=f(x)在[-4,1]上的最大值和最小值.
- 已知R上的奇函数f(x)=ax^3+bx^2+cx+d在点P(1)处的切线斜率为-9,且当x=2时函数f(x)有极值,求函数f(x)的解.
- 已知函数f(x)=ax的三次方的+bx二次方+cx在x=+/-1处取得极值,且在x=0处的切线的斜率为-3.求f(x)的解析式
- 在一个左右长度不等的杠杆(2端为A,B点O是支点)上,AO小于BO,在A,B2端挂重物G1,G2后杠杆平衡,若此时将G1,G2同时向支点O移动相同距离,则
- 进来看看(用英语回答)
- "There will have less paper money"错在那里啊?急~~~~
猜你喜欢