已知F1,F2分别是椭圆x^2/25 +y^2/16=1的左右焦点,设P为椭圆上一点,过P、F1两点作直线L1交椭圆另一点为P1,斜率为K1;过P1、F2两点作直线L2交椭圆另一点为P2,斜率为K2;再过P2、F1两点作直线L3交椭圆另一点为P3,斜率为K3……依此类推,设An=Kn,问是否存在P点,使得数列{An}为等比数列.若存在,则求出P点坐标,若不存在,则说明理由.
人气:420 ℃ 时间:2020-05-30 14:40:58
解答
前两天留下了这道题目,思路倒是很清楚,先设定P0坐标,再通过建立直线方程和与椭圆联立可以解出P1,P2,P3的坐标,最后可将k1,k2,k3分别计算出,再利用k2^2=k1*k3,导出矛盾,但是这计算量是在太大.这两天想了如下的一个方法.
利用椭圆参数方程
设P1=(5cosθ1,4sinθ1),P2(5cosθ2,4sinθ2)
k1=4sinθ1/(5cosθ1+3)(P1F1)
k2=4sinθ1/(5cosθ1-3)(P1F2)=4sinθ2/(5cosθ2-3)(P2F2)
k3=4sinθ2/(5cosθ1+3)(P2F1)
由k2^2=k1*k3
得:[4sinθ1/(5cosθ1-3)]*[4sinθ2/(5cosθ2-3)]=[4sinθ1/(5cosθ1+3)]*[4sinθ2/(5cosθ1+3)]
可解出cosθ1=-cosθ2(因为sinθ1和sinθ2都不能为0,否则斜率都为0,不是等比数列)
sinθ1=±sinθ2
代入k2=4sinθ1/(5cosθ1-3)=4sinθ2/(5cosθ2-3)
解出cosθ1=cosθ2=0(sinθ1=sinθ2,sinθ1=-sinθ2时无解)
这时cosθ1=cosθ2,sinθ1=sinθ2,即P1和P2重合,与题意矛盾.
所以k1,k2,k3...不可能成等比数列.
这样无需联立直线和椭圆方程,大大简化了计算过程.
推荐
- 是否存在实数a,b,c,是函数f(x)=ax^2+bx+c(a不等于0)的图像过点M(-1,0),且满足条件:对一切x属于R,都有x小于等于f(x)小于等于(1/2)(1+x^2)?
- 已知圆M:x^2+(y-2)^2=1,设点B,C是直线L:x-2y=0上的两点,它们的横坐标分别为t,t+4(t是实数),点P在线段BC上,过P点作圆M的切线PA,切点为A.经过A,P,M三点的圆的圆心是D,求线段DO长的最小值L(t)?
- 过原点且倾斜角为30°的直线被圆x²+y²-4x=o所得的弦长为?
- 已知两直线l1:x+ysinθ-1=0和l2:2xsinθ+y+1=0,试求θ的值,使得:(1)l1∥l2;(2)l1⊥l2.
- 为迎接校庆,学校准备投入a元建造一个花圃(如图).已知矩形ABCD的造价为40元/m2,其余的两个半圆及两个圆的造价为20元/m2.两圆的直径分别为矩形的长和宽,由于矩形ABCD要种名贵花卉,
- 海里的鱼都是咸的么?
- 1、写出一个一元一次方程,使未知数系数是-2,且这个方程的解是x=-0.5:-----
- 有真分数 假分数 带分数各一个,它们分数单位相同,大小相差1个分数单位,这三个分数可能各是多少
猜你喜欢