设有整数x1,x2,……xn,使x1+x2+……+xn=0,x1x2……xn=n,证明:4|n
人气:230 ℃ 时间:2019-08-20 14:08:18
解答
首先,x1,x2,……xn不可能全不为1或-1,否则|x1x2……xn|>|x1|+|x2|+……+|xn|>n
若n为奇数,则x1,x2,……xn除了有限个绝对值不为1的数外,其余都为1和-1
而这些绝对值不为1的数必然都是奇数
若有偶数个这样的数,则无论其正负如何,其代数和只能为偶数,而n是奇数,故
1和-1总共有奇数个,它们的代数和不可能为偶数,矛盾.
若有奇数个这样的数,则无论其正负如何,其代数和只能为奇数,但有偶数个1和
-1,也矛盾.
若2|n但4不整除n,那x1,x2,……xn中除了一个数为2或-2外,其余为奇数或±1,
若有偶数个奇数,则其代数和为偶数,加上±2后仍为偶数,但只有奇数个±1,
矛盾.
若有奇数个奇数,则其代数和为奇数,加上±2后仍为奇数,但只有偶数个±1,
矛盾.
故4|n
推荐
- 用琴森不等式证明((x1+x2+...+xn)/n)^(x1+x2+...+xn)
- 用数学归纳法证明:xi>0 ,i=1,2,3…n若x1x2…xn=1,则x1+x2+…xn≥n
- 求所有的正整数n(n≥2),满足x1x2+x2x3+````+xn-1xn≤((n-1)/n)(x1^2+x2^2+````+xn^2)
- 急 已知十个数x1,x2,x3,……x10 中,对于整数n>1有xn=n/x(n-1)则x1x2= x2x3……x10=
- 设x1,x2,…xn是整数,并满足: (1)-1≤xi≤2,i=1,2,…n; (2)x1+x2+…+xn=19; (3)x12+x22+…+xn2=99. 求x13+x23+…+xn3的最大值和最小值.
- 若已知x+(1/x)=5,则x的平方/x的四次方+x的平方+1等于多少?
- 一元一次方程当一边是什么,而另一边是什么时,方程就可以用因式分解法来解
- 甲、乙两车分别从A、B两地同时相对开出,相遇后又经过5小时,乙车到达A地,而甲车超过B地90千米,超出全程的25%,甲车每小时行多少千米?
猜你喜欢