n[1+2(n−1)] |
2 |
当a≠1时,有,
Sn=1+3a+5a2+7a3+…+(2n-1)an-1,①
aSn=a+3a2+5a3+7a4+…+(2n-1)an.②
①-②得Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,
(1-a)Sn=1-(2n-1)an+2(a+a2+a3+a4+…+an-1)
=1-(2n-1)an+2•
a(1−an−1) |
1−a |
=1-(2n-1)an+
2(1−an) |
1−a |
又1-a≠0,
∴Sn=
1−(2n−1)an |
1−a |
2(a−an) |
(1−a)2 |
综上,Sn=
|