已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)*bn
=1,1,求数列{an}的通项公式,2,求证,数列{bn}是等比数列,
人气:366 ℃ 时间:2019-11-04 18:40:11
解答
1.因为a2=6,a5=18,
所以d=(a5-a2)/3=4
所以a1=a2-d=2
所以an=a1+(n-1)d=4n-2
2.Tn=b1+b2+b3+.+bn
Tn+(1/2)*bn=b1+b2+b3+.+b(n-1)+3/2*bn=T(n-1)+3/2*bn=1
推荐
- 已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1.
- 已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+(1/2)bn=1.求数列列{An}的通项公式
- 已知数列{an}是等差数列,a2=6,a5=18,数列{bn}的前n项和是Tn,且Tn+(1/2)bn
- 已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn.求令bn=1/(an)^2-1,求{bn}及前n项和Tn
- 已知数列an是等差数列,a2=6,a5=18,数列bn的前n项和是Tn,Tn+1/2bn=1.设cn=an×bn,求证cn+1小等于cn
- 妈妈的手200字作文
- 关于浮力的一个填空题
- 某种商品2010年提价25%,2011年要恢复成原价,则应该降价
猜你喜欢