函数的零点的证明
若函数f(x)=x^2+px+q有相异的两个零点,试证明函数g(x)=x^2+(2k+p)x+(kp+q)必有一个零点介于f(x)的两个零点之间.
人气:374 ℃ 时间:2020-02-21 10:10:46
解答
方程x^2+px+q=0有两个相异实根,
说明判别式=p^2-4q>0.
设2根是a,b.(a0,4k^2>0
所以判别式>0.
设f(x)=x^2+px+q+k(2x+p)=0
因为:a^2+pa+q=b^2+pb+q=0,
2a+p0.
f(a)=a^2+pa+q+k(2a+p)=k(2a+p)
f(b)=b^2+pb+q+k(2b+p)=k(2b+p)
这2个数有1个>0,有1个
推荐
猜你喜欢
- 求出题,三年级下册数学口算题600题
- 合金有没有固定的熔点,沸点?
- 全自动洗衣机有一个水位开关,打开水龙头,设定水位(有高,中,低三档) ,水就从水
- 直角三角形,已知一个角为12度20分,求这个角对角直边尺寸( 假设另一个直角边为1000 )
- 长江是我国第一长河,长6299KM,比黄河长835KM.问:黄河长多少米?
- 写神情专注的成语.
- 9.垂直于x轴的直线交抛物线y ²=4x于A,B两点,且|AB|=4 根号3,求直线AB的方程.
- 消防通道规范