
设∠BAE=y,设BH=AH=CH=1.则
EH=tan(45-y)=
1−tany |
1+tany |
HF=tany
EF=EH+HF=
1−tany |
1+tany |
BE=1-EH=
2tany |
1+tany |
CF=1-tany
令x=tany,则
EF=x+
1−x |
1+x |
BE=
2x |
1+x |
CF=1-x
CF2+BE2=(1-x)2+(
2x |
1+x |
1−x |
1+x |
故这三条线段可做成直角三角形.
1−tany |
1+tany |
1−tany |
1+tany |
2tany |
1+tany |
1−x |
1+x |
2x |
1+x |
2x |
1+x |
1−x |
1+x |