几何 试题 已知;三角形ABC中,角ABC=45度.H是高AD和BE的交点,求证;BH=AC ,BH垂直于AC
人气:298 ℃ 时间:2019-11-04 05:27:32
解答
证明:
在三角形ABD中,角ABD=45度.ADB=90度.
所以三角形ABD是等腰直角三角形
所以BD=AD
角AEH=角ACD=90度 角EAH=角DAC
所以三角形EAH相似于三角形DAC
所以角AHE=角ACD
而角BHD=角AHE (对顶角相等)
角BDH=角ADC=90度
还有BD=AD
所以三角形BDH 全等于 三角形ADC
所以BH=AC
推荐
- 在三角形ABC中,角ABC=45度,H是高AD和BE的交点.求证:BH=AC
- 如图1,在三角形ABC中,角ABc=45度,H是高AD和高BE的交点.求证:BH=AC.
- 在三角形ABC中,角ABC为45度,H是高AD和高BE的交点,若BH等于十,求AC的长
- 已知AD和BE是△ABC的高,H是AD与BE或是它们的延长线的交点,BH=AC,则∠ABC的度数为( ) A.45° B.135° C.60°或120° D.45°或135°
- 已知AD和BE是三角形ABC的高,H是AD与BE或是它们的延长线的交点,BH=AC,求角ABC的度数
- 用”agree to"造句
- ich.ler.de.du翻译成德语什么意思
- 中国应对气候变化的做法体现了哪些政治生活道理
猜你喜欢