f(x)=ax^3-bx+4
f'(x)=3ax^2-b
当x=2时有极值,则f'(2)=12a-b=0有解,得b=12a
所以
f(x)=ax^3-12ax+4
f(2)=a*8-12a*2+4=-4/3,得a=1/3
则b=4
所以函数解析式为f(x)=1/3 x^3-4x+4
2)\若关于x的方程f(x)=k有三个零点
g(x)=f(x)-k=1/3 x^3-4x+4-k
因为g'(x)=x^2-4
令g'(x)=0时得x=2或x=-2,有两个驻点
可x=2时极小值点,x=-2是极大值点
要满足有三个零点,则在两个驻点处的纵坐标一正一负即可
所以g(2)=-4/3-k-4/3
且g(-2)=1/3*(-8)-4*(-2)+4-k=28/3-k>0,即k