已知函数f(x)=ax^2-x+2a (a≥0) 在区间[1,2]上的最小值为g(a) 求g(a)的表达式,并求g(a)的最小值.
人气:124 ℃ 时间:2019-10-25 05:25:36
解答
因为f(x)=ax^2-x+2a (a≥0)的对称轴为x=1/2a
(1)当1≤1/2a≤2时
即或1/4≤a≤1/2时,
f(x)的最小值g(a)=a*(1/2a)^2-1/2a+2a=2a-1/4a
(2)由于在1/4≤a≤1/2时,函数g(a)=2a-1/4a单调递增
所以当a=1/4时g(a)取最小值
g(1/4)=-1/2
推荐
- 已知函数f(x)=ax平方-x+2a-1 a为实常数 设f(x)在区间[1,2]上的最小值为g(a) 求g(a)的表达式
- 已知函数f(x)=x^2-ax+a/2(a大于0)在区间【0,1】上的最小值为g(a),
- 已知函数f(x)=x^2+2ax+2,x属于[-5,5],记函数f(x)在区间[-5,5]上最小值为g(x),求g(x)的函数表达式
- 已知函数f(x)=ax+1/a(1-x)(a>0),且f(x)在[0,1]上的最小值为g(a),试求g(a)的表达式,并求g(a)的最大值
- 函数fx=x²+ax+3在区间[-2 2]上的最小值为g{a} 求g{a}的表达式
- 在氧化铁和铁的混合物中加入足量的稀硫酸,充分反应后生成硫酸亚铁溶液和氢气,若生成的2价铁离子与氢气的质量比为112:1,原混合物中氧化铁与铁的质量比为10:___
- 在平面镜、凸透镜的成像中,_镜能成等大的虚像,_镜能成等大的实像,_镜能成放大的虚像.
- 如果长方形ABCD的面积是56平方厘米,那么四边形MNPQ的面积是多少?
猜你喜欢