> 数学 >
求f(x)=2x^3-3x^2的单调区间和极值
人气:291 ℃ 时间:2020-04-25 21:48:57
解答
答:
f(x)=2x^3-3x^2
求导:
f'(x)=6x^2-6x
再次求导:
f''(x)=12x-6
解f'(x)=0得:x1=0,x2=1
x<0或者x>1,f'(x)>0,f(x)单调递增
0所以:
x=0取得极大值f(0)=0
x=1取得极小值f(1)=2-3=-1
单调递增区间(-∞,0]或者[1,+∞)
单调递减区间[0,1]
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版