p(x)是不可约多项式,如果p(x)整除f(x),g(x)整除f(x),当p(x)不能整除g(x),证明p(x)g(x)整除f(x)
人气:428 ℃ 时间:2020-07-31 14:28:23
解答
由g整除f,设f=r(x)g(x)
因为p不可约切不能整除g,故两者互素
从而p只能整除r(x),设r(x)=p(x)s(x)
于是f=s(x)pg
即pg整除f
推荐
- 令f(x),g(x)是两个多项式,并且f( x3)+xg(x3) 可以被x2+x+1 整除.证明:f(1)=g(1) =0
- 证明p(x)整除f(x)g(x)则有p(x)整除g(x)或p(x)整除f(x)
- 【高代多项式】证明、在K[x]中,若x+1能被f((x^2n+1))整除、则(x^2n+1) +1也能.
- 试证:f(x)是多项式,如果(x-1)整除f(x^n),那么(x^n-1)整除f(x^n). 证明
- 证明:当a、b是不相等的常数时,若关于x的整式f(x)能被(x-a)、(x-b)整除,则f(x)也能被(x-a)*(x-b)整除
- 苟富贵 勿相忘 这句话是陈胜在什么样的情况下说的
- 一个等腰三角形的一条边长30厘米,另一条的长度与该边的比是1:3.这个三角形的周长是多少厘米?
- 把48块巧克力和41块奶糖平均分给一个组的同学,结果巧克力剩3块糖剩1块,你知道这个组最多有几个同学吗?
猜你喜欢