已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2)
当x>1时,f(x)>0,f(2)=1.
求证,f(x)在(0,+无穷)上是增函数.
解不等式f(2x-4)
人气:194 ℃ 时间:2019-09-10 08:56:23
解答
证明:
设Δx>0、x1>0,x2=x1(1+Δx),则x2>x1,f(1+Δx)>0
那么,f(x2)=f(x1(1+Δx))=f(x1)+f(1+Δx)
f(x2)-f(x1)=f(1+Δx)>0
∴ f(x)在(0,+∞)上是增函数
①在(0,+∞)上
∵f(4)=f(2×2)=f(2)+f(2)=2
又∵f(x)在(0,+∞)上是增函数,f(2x-4)
推荐
- 已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是( ) A.f(4)>f(-6) B.f(-4)<f(-6) C.f(-4)>f(-6) D.f(4)<f(-6)
- 已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性.
- 已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),且当X>1,f(x)>0.
- 已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性.
- 已知函数f(x)对任意实数x1,x2都有f(x1x2)=f(x1)+f(x2)成立,则f(0)=_,f(1)=_.
- 有两袋大米共重96千克,从甲袋取出它的9分之1倒入乙袋,这时两袋重量相等,两袋大米原来各重多少千克?
- 你能帮我扫地吗用英语怎么写
- 由CH4和O2组成的混合气体,相同条件下对氢气的相对密度为11.2,则该混合气体中CH4和O2的体积比为?
猜你喜欢