证明:过A、D分别做BC的垂线,垂足分别为G、H.设AG=1,那么CG=1,DH=
| 1 |
| 2 |
| 3 |
| 2 |
tan∠DBH=
| 1 |
| 3 |
又∠GAF=∠DBH,
∴GF=
| 1 |
| 3 |
| 1 |
| 3 |
FH=GH-GF=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
tan∠FDH=
| FH |
| DH |
| 1 |
| 3 |
∴∠DBH=∠FDH
∵∠ADB=∠DBH+∠C,
∠CDF=∠FDH+∠CDH,
∴∠ADB=∠CDF.

证明:过A、D分别做BC的垂线,垂足分别为G、H.| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| FH |
| DH |
| 1 |
| 3 |