已知A、B、C是半径为1的球面上三点,O为球心,A、B和A、C的球面距离都是π/2,B、C的球面距离是π/3
则球心O到平面ABC的距离为?
人气:388 ℃ 时间:2020-08-30 21:19:49
解答
球半径R=1
角AOB=π/2,AB=2sin(π/4)=根号2,AC=AB=根号2
角BOC=π/3,BC=2sin(π/6)=1
sin(角BAC/2)=(1/2)/(根号2)=1/(2(根号2))=(根号2)/4
cos(角BAC/2)=(1-((根号2)/4)^2)^(1/2)=(1/4)(根号(14)
sin(角BAC)=2sin(角BAC/2)cos(角BAC/2)=(1/4)(根号7)
设三角形ABC的外接圆半径=r
2r=BC/sin(角BAC)=4/(根号7)
r=2/(根号7)
球心O到平面ABC的距离=(R^2-r^2)^(1/2)=(1-(4/7))^(1/2)=(1/7)(根号21)
推荐
- 半径为1的球面上有三点ABC,若A和B、A和C的球面距离为π/2,B和C的球面距离为π/3,则球心到截面ABC的距离
- 设球O的半径是1,A、B、C是球面上三点,已知A到B、C两点的球面距离都是π2,且二面角B-OA-C的大小是π3,则从A点沿球面经B、C两点再回到A点的最短距离是( ) A.7π6 B.5π4 C.4π3 D.3π2
- A,B,C是半径为R的球的表面上三点,若A与B,A与C,B与C的球面距离都为π÷2×R,求:1..球心O到截面ABC的距
- 半径为1的球面上有A,B,C三点,其中A和B的球面距离,A和C的球面距离都是/π2,B和C的球面距离是π/3.
- 已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为π2,则球心O到平面ABC的距离为( ) A.13 B.33 C.23 D.63
- What water is like还是How water is lke
- 带物的成语有哪些成语
- 一个等边三角形的一条边长2/9米,它的周长是多少米?
猜你喜欢