> 数学 >
如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度数;
(2)求证:BD=CE.
人气:360 ℃ 时间:2019-08-17 18:01:37
解答
(1)∵△ABD为等腰直角三角形,
∴∠DBA=45°.
又∵AB=AC,∠BAC=40°,
∴∠ABC=70°.
∴∠DBC=115°;
(2)证明:∵△ABD和△ACE均为等腰直角三角形,
∴∠BAD=∠CAE=90°,AB=AD,AC=AE.
又∵AB=AC,
∴AB=AD=AC=AE.
∴△ABD≌△ACE.
∴BD=CE.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版