以三角形ABC的两边AB、AC为腰分别向外作等腰直角三角形ABD和等腰直角三角形ACE
以三角形ABC的两边AB、AC为腰分别向外作等腰直角三角形ABD和等腰直角三角形ACE,角BAD=角CAE=90度,链接DE,M,N分别是BC、DE的中点,探究AM与DE的位置关系以及数量关系,当角BAC是90度时,AM与DE的位置关系
人气:113 ℃ 时间:2019-08-21 03:00:09
解答
1、∵M是BC的中点,延长AM到F,使AF=2AM,连接BF,
由AF与BC互相平分易证△BMF≌△CMA,得BF=AC,∠MBF=∠MCA,
随之BF∥AC,∠ABF=180°-∠BAC;
∵∠BAD=∠CAE=90°,
∴∠DAE=360°-90°-90°-∠BAC=180°-∠BAC=∠ABF,
又已知AE=AC=BF,AD=AB,
∴△DAE≌△ABF,得DE=AF=2AM,且∠ADE=∠BAM.
延长MA交DE于H,由∠BAD=90°,得∠DAH+∠B AM=90°,
从而∠DAH+∠ADE=90°,∴∠MHD=90°.
以上证得2AM=DE;AM⊥DE.
2、当∠BAC=90°时,有∠DAE=90°,△DAE≌△BAC,
且仍然有2AM=DE,AM⊥DE的关系.
推荐
- 已知三角形ABC分别以三角形ABC的AC,BC边为腰,A,B为直角顶点,做等腰直角三角形ACE,BCD,M为ED中点.求证AM垂直于BM
- 如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°,连接BE、CD交于点M.求证:BE=CD.
- 如图,以三角形ABC的边AB,AC为直角边向外作等腰直角三角形ABD和三角形ACE 求证BE=DC BE 垂直 CD
- 如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边上的中线,连接DE.求证:DE=2AM.
- 如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°. (1)求∠DBC的度数; (2)求证:BD=CE.
- 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支
- 动物细胞中,最常见的二糖是?
- 当物距为30厘米时,在光屏上呈现倒立、放大的实像,那么当物距为12厘米时,应该是什么的像?
猜你喜欢