>
数学
>
已知:△ABC与△ADE中,AD=AC,∠B=∠E,∠BAC+∠DAE=180°.求证:BC=DE.
人气:392 ℃ 时间:2019-08-20 14:08:14
解答
证明:延长BA到F使AF=AE,再连接CF,
∵∠BAC+∠DAE=180°,∠BAC+∠FAC=180°,
∴∠FAC=∠DAE,
在△FAC和△EAD中,
AF=AE
∠FAC=∠EAD
AD=AC
,
∴△FAC≌△EAD(SAS),
∴FC=DE,∠E=∠F,
∵∠B=∠E,
∴∠F=∠B,
∴CF=BC,
∴DE=BC.
推荐
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD. (1)求证:△ABC≌△ADE; (2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.
如图,在三角形ABC和三角形ADE中,点E在BC的边上,角BAC=角DAE,角B=角D,AB=AD求证三角形ABC全等于三角形
如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD. (1)求证:△ABC≌△ADE; (2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.
已知:如图,在三角形ABC,和三角形ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,求证:BD=CE
如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.
整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
要求:1、整体思想
8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢
The man p______ the door open and went into the room.
2立方米50立方分米=( )立方米
I don't know what this is for me?
急:一道英语改错题
高中常见强碱强酸有哪些?谁能列出来?还有书本上说完全电离的就是强酸,我又没做过试验,望着个化学式就是些英文字母,我怎么知道是否完全电离?
英语中out outside in inside的区别是啥?最好有例句
是不是烯烃都有碳碳双键,烷烃都有碳碳单键?
4商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把剩下笔记本按定价的一半出售.问:销售完后,商店实际获得的利润是多少?
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版