求lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
求当x趋近于0时,1+tanx开根号-(1+sinx开根号),再除以x*ln(1+x)-x的平方的极限
正确答案是-1/2
初步看一下,这题是0/0求极限,要用洛必达法则
但直接上下求导,然后再求极限,显然很困难,我觉得要用等价无穷小量的代换,不知是不是这样的
下面提供几组常用的等价无穷小量,方便大家做题
当x→0,有如下
sinx~x
tanx~x
1-cosx~(x^2)/2
n次√(1+x)-1~x/n
ln(1+x)~x
e^x-1~x
人气:182 ℃ 时间:2019-09-29 02:47:01
解答
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx)]
=lim(x→0)[tanx-sinx]/2[x*ln(1+x)-x^2]
洛必达法则
=lim(x→0)[sec^2x-cosx]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[(1-cos^3(x))/cos^2(x)]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)(1-cos^3(x))/2[x/(1+x)+ln(1+x)-2x]
洛必达法则
=lim(x→0)[3cos^2(x)*sinx]/2[1/(1+x)^2+1/(1+x)-2]
=lim(x→0) 3x/2[(-2x^2-3x)/(1+x)^2]
=lim(x→0) 3x/2(-2x^2-3x)
=lim(x→0) 3x/(-4x^2-6x)
=-1/2
推荐
- 求lim(tanx-sinx)/ln(1+x³)
- x→0,lim(1-cosx)[x-ln(1+tanx)]/sinx^4的极限
- 求极限,lim(x->0) (e^x-e^sinx ) / [ (tanx )^2 * ln(1+2x)]
- 求极限:lim{[x-ln(1+tanx)]/sinx*sinx},x趋于0, 求帮忙
- (x→0)lim(x-ln(1+tanx))/(sinx)∧2=?
- 设A为3x3矩阵,A*是A的伴随矩阵,若|A|=2,求|A*|.
- 李明在运动场上看到了一些场景,你运用学过的物理知识进行分析,下列分析正确的是
- 已知ab=2,则(2a+3b)²-(2a-3b)²的值是
猜你喜欢