∵f(x)=
|x| |
x+2 |
∴当x>0时,f(x)=1−
2 |
x+2 |
∵y=
2 |
x+2 |
∴f (x)在区间(0,+∞)上是增函数.(4分)
(2)原方程即:
|x| |
x+2 |
①由方程的形式可以看出,x=0恒为方程①的一个解.(5分)
②当x<0且x≠-2时方程①有解,则
−x |
x+2 |
当k=0时,方程kx2+2kx+1=0无解;
当k≠0时,△=4k2-4k≥0即k<0或k≥1时,方程kx2+2kx+1=0有解.
设方程kx2+2kx+1=0的两个根分别是x1,x2则x1+x2=-2,x1x2=
1 |
k |
当k>1时,方程kx2+2kx+1=0有两个不等的负根;
当k=1时,方程kx2+2kx+1=0有两个相等的负根;
当k<0时,方程kx2+2kx+1=0有一个负根(8分)
③当x>0时,方程①有解,则
x |
x+2 |
当k=0时,方程kx2+2kx-1=0无解;
当k≠0时,△=4k2+4k≥0即k>0或k≤-1时,方程kx2+2kx-1=0有解.
设方程kx2+2kx-1=0的两个根分别是x3,x4
∴x3+x4=-2,x3x4=-
1 |
k |
∴当k>0时,方程kx2+2kx-1=0有一个正根,
当k≤-1时,方程kx2+2kx+1=0没有正根.(11分).
综上可得,当k∈(1,+∞)时,方程f (x)=kx2有四个不同的实数解.(13分).