∵CF∥AB,∴∠FCD=∠CBA=45°,
∴四边形CDFE是正方形,
即,CD=DF=FE=EC,
∵在等腰直角△ABC中,AC=BC=1,AB=AF,
∴AB=
12+12 |
2 |
∴AF=
2 |
∴在直角△AEF中,(1+EC)2+EF2=AF2
∴(1+DF)2+DF2=(
2 |
解得,DF=
| ||
2 |
(2)如图,延长BC,做FD⊥BC,交点为D,延长CA,做FE⊥CA于点E,
同理可证,四边形CDFE是正方形,
即,CD=DF=FE=EC,
同理可得,在直角△AEF中,(EC-1)2+EF2=AF2,
∴(FD-1)2+FD2=(
2 |
解得,FD=
| ||
2 |
故答案为:
| ||
2 |