已知a,b,c为三个非零实数,且a+b+c=0求证:[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b-c)+b/(c-a)]=9
有人解答过这一个说假设a=1,b=1,c=-2算出前一个因式是0因此说此要证明的式子错了,显然这种假设是不成立的,因为题目中已隐含了a,b,c不相等的关系,否则就没有意义了!请哪位大师帮着再看一看!急!谢谢谢!
人气:474 ℃ 时间:2020-04-16 09:08:02
解答
因为a+b+c=0,所以c=-a-b,
所以(a-b)/c+(b-c)/a+(c-a)/b=(a-b)/(-a-b)+(b+a+b)/a
+(-a-b-a)/b=(b-a)/(b+a)+2b/a-2a/b,
通分,得(a-b)/c+(b-c)/a+(c-a)/b=(2b^3+3ab^2-3a^2b-2a^2)/[(a+b)ab]=(2b+a)(b+2a)(b-a)/[(a+b)ab].
而c/(a-b)+a/(b-c)+b/(c-a)=(b+a)/(b-a)+a/(2b+a)-b/(2a+b),
通分,得c/(a-b)+a/(b-c)+b/(c-a)=9ab(a+b)/[(2b+a)(b+2a)(b-a)],
所以[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b-c)+b/(c-a)]=9.
推荐
- 已知非零的三个实数a,b,c满足1/a+1/b+1/c=1/a+b+c.求证a+b,b+c,c+a中至少有一个是零.
- 已知a,b,c为非零实数,求a/|a|+b/|b|+c/|c|+ab/|ab|+bc/|bc|+ac/|ac|的值
- 已知a,b,c为非零实数,且满足b+ca=a+bc=a+cb=k,则一次函数y=kx+(1+k)的图象一定经过( ) A.第一、二、三象限 B.第二、四象限 C.第一象限 D.第二象限
- 已知非零实数a.b.c满足a^2+b^2+c^2=1,且a(1/b=1/c)+b(1/c+1/a)+c(1/a+1/b)=-3,求a+b+c的值
- 已知:a,b,c是非零实数,
- 20.函数y=√-x^2+x+2的值域为多少?
- 有12个位置,每个位置放一个自然数.若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”.请问含1992这个数的好串数共_个.
- 五分之四减(十分之七减二十分之十三)简便计算
猜你喜欢