试利用基础解系的理论证明:若n阶方程组的秩为n-1,则A的伴随矩阵A*的秩为1
人气:295 ℃ 时间:2020-09-16 13:36:21
解答
由r(A) < n,有|A| = 0,进而AA* = |A|·E = 0.
由矩阵乘法可知,A*的列向量都是线性方程组AX = 0的解.
而r(A) = n-1,故AX = 0的基础解系恰有1个非零解,
A*的各列都是该非零解的常数倍,故r(A*) ≤ 1.
又由r(A) = n-1,A有n-1阶非零子式,故A* ≠ 0,r(A*) > 0.
因此r(A*) = 1.
推荐
- 若n元齐次方程组的系数矩阵A的秩为r,且r
- 设A是m阶满秩阵,B是m*n阶矩阵,试证明ABx=0与Bx=0是同解方程组?并进一步利用齐次线性方程组的有关定理,
- 设秩是n阶矩阵,证明:秩(A*)=n,如秩(A)=n;秩(A*)=1,如秩(A)=n-1;秩(A*)=0,如秩(A)
- 给定两个含有n个变元的齐次线形方程组,如果它们系数矩阵的秩都小于n/2证明这两个方程组有非零的公共解
- 某方程组的系数矩阵与该矩阵(如下)秩相同,证明方程组有解;方程组等号右边分别是b1 b1 .bn
- 初二英语unit1语法
- 拉面怎么炒好吃
- 学到老活到老,我们应该怎样挖掘自己的读书兴趣从而提升自己的读书能力?活得有意义呢?
猜你喜欢