> 数学 >
已知二次函数y=ax^2+bx+c的图像经过点A(3,0),B(2,-3),C(0,-3)
1.求此函数关系式和图像对称轴
2.对称轴是否存在点P,使得△PAB中PA=PB?若存在,求出点P
人气:313 ℃ 时间:2019-08-17 23:15:34
解答
1.先设解析式为y=ax^2+bx+c(一般式)
由图可得图像经过A(3,0)B(2,-3) C(0,-3)得
①9a+3b+c=0
②4a+2b+c=-3
③c=-3
------------------------------------------------
(此为解方程组 ↓ )
将c代入①得b=1-3a ④
将④代入②得4a+2×( 1-3a )-3=-3
-----------------------------------------------
解得a=1 b=-2 c=-3
∴解析式为y=x²-2x-3
图像对称轴就先把y=x²-2x-3化为顶点式为y=(x²-1)-4 对称轴直线x=1 画图像这就不用说了
2.存在
设对称轴与x轴的交点为D,使AD与BD相等就行了
THE END 这种是属于A组题(基础题)这不会做就说明你上课没认真听!其实书上就有关于此题的解题过程
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版