> 数学 >
解三角方程 (1+tanx)/(1-tanx)=1+sin2x
RT
注意是要用含k的答案
人气:287 ℃ 时间:2020-07-07 23:51:09
解答
(1+tanx)/(1-tanx)=1+sin2x
tan(x+π/4)=(sinx+cosx)²
sin(x+π/4)/cos(x+π/4)=2sin²(x+π/4)
sin(x+π/4)-sin(x+π/4)sin(2x+π/2)=0
sin(x+π/4)[sin(2x+π/2)-1]=0
sin(x+π/4)[cos2x-1]=0
则:x+π/4=kπ或2x=2kπ,解得x=kπ-π/4或x=kπ.其中k是整数.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版