P为△ABC的边BC垂直平分线上的一点,是2角PBC=角A.BP,CP的延长线分别交AC,AB于D,E.
求证:BE=CD
写出它的两种做法
人气:278 ℃ 时间:2019-10-17 04:43:17
解答
1.在PD上取点F,使PF=PE,连接FC 因为 P为△ABC的边BC垂直平分线上的一点 所以 PB=PC,角PBC=角PCB 又因为 角EPB=角FPC 所以 三角形EPB全等于三角形FPC 所以 角EBP=角FCP 因为 角DFC=角PBC+角PCB+角FCP,角FDC=角A+角EBP...
推荐
猜你喜欢
- “种树者必培其根,种德者必养其心”的意思
- 英文影片观后感
- 一般现在失态的陈述句中,如果句子的主语是第三人称单数,其谓语动词就加——or——(注意词尾变化规则
- 如图,在Rt三角形ABC中,∠ACB=90,CD⊥AB,若BC=根号10,tan∠BCD=1/3.求BD和AC的值
- Hi Mary.Here's a letter ___you.Who is it___?
- 一个两位数,十位数字是个位数字的2倍,如果把十位数字和个位数字对调所得的两位数比原来小18,求原来的两位数.
- 初二数学 找规律题
- 7x-6.5x=24.5 5.4+4.6×3.5