由
tanx+1 |
2tanx+3 |
2 |
7 |
1 |
3 |
(1)
sinx+2cosx |
5cosx−sinx |
tanx+2 |
5−tanx |
5 |
16 |
(2)
1 |
2sinxcosx+cos2x+1 |
sin2x+cos2x |
2sinxcosx+2cos2x+sin2x |
=
tan2x+1 |
2tanx+2+tan2x |
10 |
13 |
tanx+1 |
2tanx+3 |
2 |
7 |
sinx+2cosx |
5cosx−sinx |
1 |
2sinxcosx+cos2x+1 |
tanx+1 |
2tanx+3 |
2 |
7 |
1 |
3 |
sinx+2cosx |
5cosx−sinx |
tanx+2 |
5−tanx |
5 |
16 |
1 |
2sinxcosx+cos2x+1 |
sin2x+cos2x |
2sinxcosx+2cos2x+sin2x |
tan2x+1 |
2tanx+2+tan2x |
10 |
13 |