①当x=0时,显然ax3-3x+1≥0成立,此时a∈R;
②当0<x≤1时,ax3-3x+1≥0即a≥
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
令f(x)=
| 3x−1 |
| x3 |
| 3−6x |
| x4 |
当0<x<
| 1 |
| 2 |
| 1 |
| 2 |
∴f(x)max=f(
| 1 |
| 2 |
| ||
|
∴a≥4;
③当-1≤x<0时,ax3-3x+1≥0即a≤
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
此时f(x)=
| 3x−1 |
| x3 |
| 3−6x |
| x4 |
∴f(x)min=f(-1)=
| −3−1 |
| (−1)3 |
∴a≤4;
综上所述,a=4.
故选D.
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
| 3−6x |
| x4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
|
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
| 3x−1 |
| x3 |
| 3−6x |
| x4 |
| −3−1 |
| (−1)3 |