△ABC的三边a,b,c的倒数成等差数列,求证
B<
人气:173 ℃ 时间:2020-03-26 03:42:03
解答
证明:方法一:已知
+=.
得
b=,
a2+c2−b2=a2+c2−()2≥2ac−=
2ac(1−)≥2ac(1−)>0.
即cosB=
>0
故
B<法2:反证法:假设
B≥.
则有b>a>0,b>c>0.
则
<,<可得
<+与已知矛盾,
假设不成立,原命题正确.
推荐
- △ABC的三边a,b,c的倒数成等差数列,求证B<π2
- △ABC的三边a,b,c的倒数成等差数列,求证B<π2
- 三角形ABC的三边a,b,c的倒数成等差数列,求证B
- 已知三角形ABC的三边a.b.c.的倒数成等差数列,求证B
- △ABC的三边a,b,c的倒数成等差数列,求证B<2/pai
- 已知命题p:存在x属于R,使得x^2-2ax+2a^2-5a+4=0;命题q:曲线x^2/3+y^2/a-3=1是双曲线.若"p或q"为真,"p且q"为假,求实数a的取值范围
- The missing boy was last seen ____near the river.A playing B to be playing C play D to play ,选哪个
- 名家名篇 读书 格言
猜你喜欢