> 数学 >
设数列{Xn}有界,又lim(n->正无穷)Yn=0,证明:lim(n->正无穷)XnYn=0.定义法
人气:317 ℃ 时间:2019-08-20 09:35:07
解答
如果存在M>0,对任意的n都有:|xn|≤M,称数列{xn}有界.
所以lim(n->正无穷) Xn=M
故lim(n->正无穷)XnYn
=[lim(n->正无穷)Xn]*[lim(n->正无穷)Yn]
=M*0
=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版