如图,已知正方形ABCD的边CD在正方形DEFG的DE边上,连接AE,CG
将正方形DEFG绕点D按顺时针,使点E落在BC边上,连接AE,GC,猜想AECG的关系
人气:270 ℃ 时间:2019-12-11 23:56:37
解答
(1)答:AE⊥GC;(1分)
证明:延长GC交AE于点H,
在正方形ABCD与正方形DEFG中,
AD=DC,∠ADE=∠CDG=90°,
DE=DG,
∴△ADE≌△CDG,
∴∠1=∠2;(3分)
∵∠2+∠3=90°,
∴∠1+∠3=90°,
∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,
∴AE⊥GC.(5分)
(2)答:成立;(6分)
证明:延长AE和GC相交于点H,
在正方形ABCD和正方形DEFG中,
AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,
∴∠1=∠2=90°-∠3;
∴△ADE≌△CDG,
∴∠5=∠4;(8分)
又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,
∴∠6=∠7,
又∵∠6+∠AEB=90°,∠AEB=∠CEH,
∴∠CEH+∠7=90°,
∴∠EHC=90°,
∴AE⊥GC.(10分)
(其它证法可参照给分)
推荐
- 如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证: (1)AE=CG; (2)AE⊥CG.
- 如图,已知E是正方形ABCD的边BC上一点,以DE为边作正方形DEFG,连接AE、CG.我已经证到AE=CG,AE垂直CG,
- 如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证: (1)AE=CG; (2)AE⊥CG.
- 如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证: (1)AE=CG; (2)AE⊥CG.
- 如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证: (1)AE=CG; (2)AE⊥CG.
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢