高二数学函数数列{fn(x)}满足f1(x)=x\根号里1+x²(x>0),fn+1(x)=f1[fn(x)]
函数数列{fn(x)}满足f1(1)/根号下(1+x^2) f(n+1)(x)=f1[fn(x)]
(1)求f2(x),f3(x0
(2)并用数学归纳法证明fn(x)解析式
人气:331 ℃ 时间:2019-08-21 20:13:37
解答
第一问,利用迭代.易知f1(x)=x/√(1+x^2),代入fn+1(x)=f1[fn(x)],令n=1,得
f2(x)=f1(x)/√[1+(f1(x))^2],代入其解析式有f2(x)=x/√(1+2x^2).
同理求f3(x)=x/√(1+3x^2).
第二问,猜想fn(x)=x/√(1+nx^2).(由f2(x),f3(x)解析式结构得到.
则,n=1时,其成立.
设n=k(k>=1)时,fk(x)=x/√(1+kx^2),则fk+1(x)=f1(fk(x)),代入前面的fk(x),看解出的fk+1(x)的解析式是否是fk+1(x)=x/√(1+(k+1)x^2),(解出的结果必定是这个)
则棕上,对于n属于(正整数),有fn(x)=x/√(1+nx^2)成立,命题得证.
推荐
- 已知函数f(x)=(x-根号3)/(根号3x+1),设f1(x)=f(x),fn+1(x)=f(fn(x)),若集合m={x|f2012(x)=2x+根号3}
- 设点P(x,y)是曲线根号下(x^2/25)+根号下(y^2/9)=1上的点,F1=(-4,0),F2=(4,0),
- 设椭圆C:x²/a²+y²/b²=1(a>b>0)的一个顶点与抛物线C:x²=4根号3y的交点重合,F1,F2分别是椭圆的左右焦点且离心率e=1/2,且过椭圆右焦点F2的直线l与椭圆C交于M
- 数学函数选择题:若函数f(x)=根号x+1根号x-1与g(x)=根号xˆ2-1表示同一函数,则它们的定义域是( )
- 设椭圆C:x²/a²+y²/b²=1(a>b>0)过点M(根号2,1),且焦点为F1(-
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢