在△ABC中,求证sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)>=3/2
人气:473 ℃ 时间:2019-11-04 23:01:58
解答
证明:先用正弦定理.将角度化成边:sin(A+B)/(sinA+sinB)+sin(B+C)/(sinB+sinC)+sin(C+A)/(sinC+sinA)=sinc/(sinA+sinB)+sina/(sinB+sinC)+sinb/(sinC+sinA)=1/(sina/sinc)+(sinb/sinc)+1/(sinb/sina)+(sinc/sina)+1...
推荐
- 在三角形ABC中,(sinA-sinB)/sin(A+B)=(√2sinA-sinC)/(sinA+sinB)
- 在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(sinB+sinc,sinA−sinB),n=(sinB−sinC,sin(B+C)),且m⊥n.(1)求角C的大小;(2)若sinA=4/5,求cosB的值.
- 在三角形ABC中,向量m=(sinB+sinC,sinA-sinB),n=(sinB-sinC,sin(B+C)),且m垂直n,求角C?
- 在△abc中 角a b c所对的边分别为a b c 若sinA sinB sinC=根号3/2(sin^2A+sin^2B-sin^2C)
- 在三角形ABC中.sin^2A-sin^2C=(sinA-sinB)*sinC,求∠C
- 实数X,Y满足平方根号X-3+Y平方+6Y+9=0,求X-8Y的平方根和立方根
- 介绍下世界上面积最大国家和面积最小国家(人口、经济、文化……)
- 下面一个暗字上面一颗绿色的珠子是什么成语
猜你喜欢