.设O为坐标原点,F1、F2是双曲线(X^2/a^2)-(y^2/b^2)=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠
中线长公式是什么?
人气:361 ℃ 时间:2019-08-19 14:53:29
解答
设|PF1|=x,|PF2|=y,且x>y
则x-y=2a
由余弦定理 1/2 = (x² + y² - 4c²)/(2xy)
x² + y² - xy = 4c²
中线长公式OP² = 1/2(PF1² + PF2² - 1/2F1F2²)
7a² = 1/2(x² + y² - 2c²)
∴xy = 4b²
x² + y² = 4(b²+c²)
7a² = 2(b² + c²) - c²
2a² = b²
渐进线方程为x²/a²=y²/b
即y²=2x²
推荐
- 设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
- 设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(存在点P,使得角F1PF2=60°OP=根号7a,求渐近线方
- 设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(存在点P,使得角F1PF2=60°OP=根号10a,求渐近线方程
- 如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=π3,且△PF1F2的面积为23,又双曲线的离心率为2,求该双曲线的方程.
- 已知F1,F2分别是双曲线x2a2-y2b2=1(a>b>0)的两个焦点,A和B是以O(O为坐标原点)为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为( )
- 过去式 they were sang 还是they was sang 和 ...he were slept 还是 he was slept?.谢
- “This is ______ most useful reference book,” a teacher from ______ European country told us in cl
- he makes toys in the factory哪里错了
猜你喜欢