已知w>0,a向量=(2sinwx+coswx,2sinwx-coswx)b向量=(sinwx,coswx),f(x)=a向量*b向量,
f(x)=a向量*b向量,f(x)图像上相邻的两条对称轴的距离为π/2.
求w的值
求函数f(x)在[0,π/2]上的单调区间及最值
人气:357 ℃ 时间:2019-10-06 02:08:37
解答
1
f(x)=a·b=(2sin(wx)+cos(wx),2sin(wx)-cos(wx))·(sin(wx),cos(wx))
=(2sin(wx)+cos(wx))sin(wx)+(2sin(wx)-cos(wx))cos(wx)
=2sin(wx)^2+sin(wx)cos(wx)+2sin(wx)cos(wx)-cos(wx)^2
=3sin(2wx)/2+(1-cos(2wx))-(1+cos(2wx))/2
=3sin(2wx)/2-3cos(2wx)/2+1/2
=(3√2/2)sin(2wx-π/4)+1/2
f(x)图像相邻的两条对称轴的距离为π/2
即f(x)的最小正周期:T=π
即:2π/(2w)=π
即:w=1
即:f(x)=(3√2/2)sin(2x-π/4)+1/2
2
增区间:2x-π/4∈[2kπ-π/2,2kπ+π/2]
即:x∈[kπ-π/8,kπ+3π/8],k∈Z
减区间:2x-π/4∈[2kπ+π/2,2kπ+3π/2]
即:x∈[kπ+3π/8,kπ+7π/8],k∈Z
x∈[0,π/2],故当k=0时,增区间:x∈[0,3π/8]
减区间:x∈[3π/8,π/2]
x∈[0,π/2],2x-π/4∈[-π/4,3π/4]
sin(2x-π/4)∈[-√2/2,1]
故:(3√2/2)sin(2x-π/4)+1/2∈[-1,(3√2+1)/2]
即:fmax=(3√2+1)/2
fmin=-1
推荐
- 已知f(x)=向量m*向量n,向量m=(sinwX+coswX,√3coswX),向量n=(coswX-sinwX,2sinwX) w>0 f(x)相邻对称,轴间距离大于等于π/2
- 向量m=(sinwx+coswx,根号3coswx),向量n=(coswx-sinwx,2sinwx),w>0,设f(x)=m`n,f(x)的图像
- 向量m=(sinwx+coswx,根号3coswx)(w>0),n=(coswx-sinwx,2sinwx).函数f(x)=m*n+t
- 已知f(x)=向量m*向量n,向量m=(sinwX+coswX,√3coswX),向量n=(coswX-sinwX,2sinwX) w>0 f(x)相邻对称,轴间距离大于等于π/2
- 已知f(x)=向量m*向量n,向量m=(sinwX+coswX,√3coswX),向量n=(coswX-sinwX,2sinwX) w>0 f(x)的图像与直线Y=2相邻两公共点间的距离为“派”.(1)求w范围 (2)在△ABC中,a=√3
- 已知二分之一,3,4这三个数,再添上一个数可以组成一个比例,这个数可以是()
- A={0,a}B={x|x∈A} A与B什么关系
- 用描述法表示大于9的所有实数组成的集合为
猜你喜欢