直三棱柱ABC—A1B1C1,底面三角形ABC中,CA=CB=1,,棱AA1=2,M、N分别为A1B1、AB的中点.
①求证:平面A1NC‖平面BMC1;
②求异面直线A1C与C1N所成角的大小;
③求直线A1N与平面ACC1A1所成角的大小.
人气:493 ℃ 时间:2019-10-10 05:11:11
解答
第三题:根号6/2
推荐
- 直三棱柱ABC-A1B1C1的底面三角形ABC中,CA=CB=1,角BCA=90°,棱AA1=2,M,N分别是A1B1,A1ADE 中点,求MN的
- 已知:直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,侧棱AA1=2,N是棱AA1的中点,求:异面直线BN与CB1的所成角的余弦值.
- 直三棱柱ABC—A1B1C1,底面三角形ABC中,CA=CB=1,∠BCA=90•,棱AA1=2,M,N分别为A1B1、AB的中点.
- 如图,在直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠BCA=90度,棱AA1=2,M、N分别为A1B1、AB的中点
- 如图三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°, 证明:AB⊥A1C.
- 甲、乙两人相距6千米,他们从各自所在地点出发,同时前进,甲追乙,如果两人同时出发,经过3小时,甲追上乙;如
- 一个物体从正面看是正三角形,从左面看也是正三角形,从上面看是圆,由此推测这个物体是?
- 翻译 帮我把这段翻成英语 谢谢
猜你喜欢