a |
sinA |
b |
sinB |
c |
sinC |
∴a=2RsinA,b=2RsinB,c=2RsinC,
∴a2sin2B+b2sin2A=2a2sinB•cosB+2b2sinA•cosA
=8R2sinA•sinB•(sinAcosB+sinBcosA)
=8R2sinA•sinB•sin(A+B)
=8R2sinA•sinB•sin(π-C)
=8R2sinA•sinB•sinC,
又2absinC=2•2RsinA•2RsinB•sinC=8R2sinA•sinB•sinC,
∴a2sin2B+b2sin2A=2absinC.