已知f(x)是R上的偶函数,对任意的实数x都有f(x+6)=f(x)+f(3)成立,若f(1)=2,则f(2007)=?
人气:160 ℃ 时间:2020-01-27 09:17:58
解答
∵f(x+6)=f(x)+f(3),令x=-3,则f(-3+6)=f(-3)+f(3),即f(3)=f(-3)+f(3),又∵f(x)为偶函数∴f(3)=f(3)+f(3),解得f(3)=0.∴f(x+6)=f(x),即函数f(x)的周期为6.因为2007÷6=334……3所以f(2007)=f(3)=0....
推荐
- 已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+f(3)成立.若f(1)=2,则f(2007)等于多少?
- y=f(x)是定义在R上的偶函数,且对任意的实数,都有f(x+1)=f(x-1)成立.当x∈[1.2]时,f(x)=log a x
- 函数f(x)是定义在R上的偶函数,且对任意实数,都有f(x+1)=f(x-1)成立,已知当x[1,2]时,f(x)=loga(x)
- 设F(x)(x是实数)为偶函数,F(x—3/2)=F(X+1/2)恒成立
- 已知f(x)是定义在R上的偶函数,且对任意实数x都有f(x+1)=f(x-1)成立,当x属于[1,2],f(x)=?
- 浙江省普通高中会考几门学科
- 7x=-3x+5
- 小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同节能灯售价高,但
猜你喜欢