若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定
若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定全部为0.
人气:362 ℃ 时间:2020-05-21 15:04:39
解答
设 λ 是 A 的特征值,则 f(λ) 是 f(A) 的特征值.
而 f(A) = 0
所以 f(λ) = 0 (零矩阵只有0特征值).
又因为f(x)是一个常数项不为零的多项式.
故必有 λ≠0.
即A的特征值都不为0.
题目是不是有误啊!
推荐
- 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.
- 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A于B没有相同的特征值.
- f(x)表示一个k次多项式,A为n阶矩阵,则f(A)的特征值是否全部可用A的特征值表示?
- 已知n阶矩阵A的特征值为λ1,λ2,……,λn,p(x)为x的多项式,求 p(A)的特征多项式
- 关于“若N阶矩阵A与B相似,则A与B的特征值多项式相同”证明的疑问
- 九年级上册古文有哪些?智取生辰纲,杨修之死那一单元算是古文么?
- 中华文化博大精深不但汉字寓意深远语言也同样精辟你能举几个例子吗
- 若a+3的绝对值与b-4的平方互为相反数,求a的b次幂的值.(要有具体过程)
猜你喜欢