不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为( )
A. (-∞,-1]∪[4,+∞)
B. (-∞,-2]∪[5,+∞)
C. [1,2]
D. (-∞,1]∪[2,+∞)
人气:217 ℃ 时间:2019-08-20 15:59:46
解答
因为|x+3|-|x-1|≤4对|x+3|-|x-1|≤a2-3a对任意x恒成立,
所以a2-3a≥4即a2-3a-4≥0,
解得a≥4或a≤-1.
故选A.
推荐
猜你喜欢
- 关于勇气.实践.毅力 的名言`和故事 (写作文要用的论据)
- 蝉在雨天鸣叫,还是在晴天?为什么?
- 1.已知圆C的方程是f(x,y)=0,点A(x0,y0)是圆外一点.那么方程f(x,y)-f(x0,y0)=0表示的曲线是()
- i have never heard of that place before
- 什么的小鸟在天上飞
- 初二因式中的分组分解法有两道题怎么解.
- 如图,两摞同一规格的纸杯整齐的叠放在桌面上,如果将这两摞纸杯整齐的合成一摞时,高度是多少厘米?
- 一个正方形的面积是8,它的边长是多少?它的边长是有理数还是无理数?