如图,RT三角形ABC中,角ABC=90°,以AB为直径的圆O交AC于D,过点D的切线交BC于点E,(1)求证,DE=二分之
BC;(2)若tan角C=二分之根5,DE=2,求AD的长
人气:235 ℃ 时间:2019-08-16 17:51:36
解答
连接BDAB是直径,D在圆上所以角BDC=90度所以三角形ABC相似于三角形BDC所以AB:BC=BD:DC因为DE=BC/2=2所以BC=4tan角C=BD:DC=二分之根5所以有AB=二分之根5*4=2根号5又角ABD=角C所以tanABD=AD:BD=二分之根5所以AD=2根5...
推荐
- 如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
- 如图所示Rt三角形ABC,角ABC=90度,以AB为直径作圆O交于AC于D,E为BC的中点连接DE求证DE为圆O的切线
- 如图RT三角形ABC中∠ABC等于90°以AB为直径的圆O交AC于点D过点D做元O的切线DE叫交BC与E求证BE等于CE
- 如图,在RT三角形ABC中,角C=90度,AB=4,分别以AC,BC为直径作半圆,面积分别记为.
- 如图,在Rt三角形abc中,角C=90度,以AC为直径作圆O,交AB于D,过点O作OE//AB,交BC于E(1)证:ED为圆O切线 (2
- 东风不与周郎便,铜雀春深锁二乔赏析
- 甲乙两地相距96千米,快车和慢车同时从两地相向开出,4/5小时相遇,两车的速度比为3:2,快车和慢车每小时
- 作文《一次难忘的谈话?
猜你喜欢