f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立.求所有满足条件的函数f(x).
人气:204 ℃ 时间:2019-08-18 19:37:37
解答
原式两边同时处以mn(m、n不为零)得 f(m)f(n)/(mn)=f(n/2)/n+nf(m/2)/m;
令g(x)=f(x)/x (x不为零),则有2g(m)g(n)=g(m/2)+g(n/2),
令m=n,得g(m/2)=[g(m)]^2>=0对任意m不为零都成立,
再将g(m/2)=[g(m)]^2、g(n/2)=[g(n)]^2代入2g(m)g(n)=g(m/2)+g(n/2),得:[g(m)-g(n)]^2=0,即g(m)=g(n)对于任意m、n不为零时成立,
亦即函数g(x)为常数函数,
注意到g(x)不能恒为零(否则f(x)将恒为零)且非负,即g(x)>0,
而若存在x使得g(x)>1,则g(x/2)=[g(x)]^2>g(x),即g(x)不为常数函数,与之前结论
矛盾!
而若存在x使得0
推荐
- f(x),定义域为R,且x不恒为0 f(m)f(n)=mf(n/2)+nf(m/2)成立 证明t×f(t)≥0
- 1.已知f(x)是定义在R上不恒为0的函数,且对任意的M,N∈R都满足f(M.N)=Mf(N)+Nf(M) a,求f(0),f(1)的值
- 函数f(x)的定义域为R,f(x)的值不恒为零,又对于任意的实数M,N,总有f(m)f(n)=mf(n\2)
- 已知函数f(x)=(1/2^x-1+1/2)x^3,(1)求函数的定义域(2)讨论奇偶性(3)证明f(x)大于0
- 若函数f(x)的定义域为[0,1],则f(x+a)·f(x-a)(0
- 怕有鲛人在岸的那首诗的下一句
- 这是一支黑色钢笔翻译句子
- 珠穆朗玛峰南坡比北坡雪线相关问题
猜你喜欢