已知向量a=(根号3cosx,cosx),b=(sinx,2cosx),记函数f(x)=2*向量a*向量b-2*|向量b|^2-1
1,当0<=X<=5π/12,求函数f(x)的值域
2,在(1)中,当函数f(x)取最大值时,求|1÷√t×向量a+√t×向量b|,1/2<=t<=2时的最大值和最小值
人气:440 ℃ 时间:2019-08-21 07:44:44
解答
f(x)=2[√3cosxsinx+2(cosx)^2]-2[(sinx)^2+(2cosx)^2]-1
=√3sin2x-2(cosx)^2-3
=√3sin2x-cos2x-4
=2sin(2x-π/6)-4,
1.0<=x<5π/12,
∴-π/6<=2x-π/6<=2π/3,
sin(2x-π/6)∈[-1/2,1],
∴f(x)的值域是[-5,-2].
2.2x-π/6=π/2,x=π/3,a=(√3/2,1/2),b=(√3/2,1),
|(1/√t)a+√tb|=|((√3/2)(1/√t+√t),1/(2√t)+√t)|
=√[(3/4)(1/√t+√t)^2+1/(4t)+1+t]
=√[(3/4)(1/t+2+t)+1/(4t)+1+t]
=√(1/t+7t/4+5/2),1/2<=t<=2,
设g(t)=1/t+7t/4+5/2,则
g'(t)=-1/t^2+7/4=[(7/4)t^2-1]/t^2=(7/4)[t+√(4/7)][t-√(4/7)]/t^2,
1/2<=t<√(4/7)时g'(t)<0,g(t)↓;t>√(4/7)时g(t)↑,
∴g(t)|min=g(√(4/7)=√7+5/2,g(1/2)=2+7/8+5/2=43/8,g(2)=1/2+7/2+5/2=9/2,
g(t)|max=9/2,
∴所求最小值=√(√7+5/2),最大值=3√2/2.
推荐
- 已知向量a=(5根号3cosx,cosx)b=(sinx,2cosx),函数f(x)=ab+b^2,求F(X)最小正周期
- 已知向量a(2cosx,sinx)),b=(cosx,2根号3cosx)函数f(x)=a*b+1 三角形abc中 abc分别是角ABC的对边,a=1且f(a)=3求三角形abc面积s最大值
- a向量=(根号3cosx/2,2cosx/2),向量b=(2cosx/2,-sinx/2)函数f(x)=向量a·向量b
- 设向量a=(2cosx,sinx),向量b=(cosx,-2根号3cosx),函数f(x)=向量a*向量b
- 已知a=(cosx,23cosx),b=(2cosx,sinx),且f(x)=a•b. (I)求f(x)的最小正周期及单调递增区间; (Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若(a+2c)cosB=-bcosA成立,求f(A
- y=(sinx)^x(sinx>0) 求导
- 谁能告诉下 氧化钙和碳酸钾在水中互相反应的方程式.
- 李老师有2元,5元,10元的````小学六年级上册填空题
猜你喜欢