> 数学 >
如果方程x^2+ax+b=0的两个实根一个小于1,另一个大于1,求实数a^2+b^2范围
人气:389 ℃ 时间:2020-03-18 09:33:26
解答
解由方程x^2+ax+b=0
构造函数f(x)=x^2+ax+b
又由方程x^2+ax+b=0的两个实根一个小于1,另一个大于1
则f(1)<0
即1+a+b<0
即a+b<-1
即(a+b)^2>1
又由2(a^2+b^2)≥(a+b)^2>1
即a^2+b^2>1/2
故实数a^2+b^2范围(1/2,正无穷大).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版