> 数学 >
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
证明:
(1)函数y=f(x)是R上的减函数;
(2)函数y=f(x)是奇函数.
人气:140 ℃ 时间:2019-10-18 08:00:38
解答
证明:(1)设x1>x2,则x1-x2>0,∴f(x1-x2)<0,而f(a+b)=f(a)+f(b),∴f(x1)=f(x1-x2+x2)=f(x1-x2)+f(x2)<f(x2)∴函数y=f(x)是R上的减函数;(2)由f(a+b)=f(a)+f(b)得f(x-x)=f(x...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版